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Dispersion in a bent-solenoid channel$
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Abstract

Longitudinal ionization cooling of a muon beam is essential for muon colliders and will be useful for neutrino

factories. Bent-solenoid channels with symmetric focusing has been considered for beam focusing and for generating the

required dispersion in the ‘‘emittance exchange’’ scheme of longitudinal cooling. In this paper, we derive the

Hamiltonian that governs the linear beam dynamics of a bent-solenoid channel, solve the single-particle dynamics, and

give equations for determining the lattice functions, in particular, the dispersion functions.
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1. Introduction

To build muon colliders with luminosity inter-
esting to high-energy physics experiments, the
phase–space distribution of a muon beam collected
from decay of pions created on a proton target,
needs to be reduced by 106: Both transverse and
longitudinal cooling are required [1,2]. For neu-
trino factories [3], cooling in the longitudinal
direction will help to increase the intensity and
reduce the cost. To obtain the desired cooling,
ionization cooling channels are being developed.
When passing through absorbers, muons’ momen-
tum vectors are reduced due to ionization energy
loss. By accelerating muons only longitudinally in

the RF cavities, transverse cooling can be
achieved. However, the ionization process itself
does not effectively cool the longitudinal momen-
tum spread because the energy-loss rate is not
sensitive to beam momentum except for very low-
energy muons. To achieve longitudinal cooling, a
promising option is the ‘‘emittance exchange’’
scheme: introducing dispersion to spatially sepa-
rate muons of different energies and then using
wedge absorbers to discriminatively cool them [2].
Since solenoid channels are well-suited for

focusing low-energy muon beams with large
acceptance, they are the primary candidate for a
transverse cooling channel [1,3]. Thus, a natural
choice of transport channel for emittance ex-
change is to add dispersion in a solenoid channel.
The straightforward approach is to superimpose a
dipole field with the solenoid field and make the
solenoids bend along the curved reference orbit
determined by the dipole field. Since the main
solenoid field continuously rotates the beam and
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tends to make the beam rotationally symmetric, it
is advantageous to have symmetric focusing in a
bent-solenoid channel. To achieve this, gradient
dipoles (with field index n ¼ 1

2
) could be used.1

In a bent-solenoid cooling channel, neither the
solenoid nor the dipole field can usually be treated
as piecewise constant elements. Thus the lattice
consists of rather complicated combined function
magnets. In this paper, we study the single-particle
linear dynamics in such a bent-solenoid channel
with no absorbers. The result, especially the
equations for the dispersion functions, can be
useful for designing a bent-solenoid focusing
channel with the desired dispersion. Our result is
also useful as a basis for a comprehensive
ionization cooling theory or for studying the
nonlinear dynamics in a bent-solenoid channel.

2. Hamiltonian

The magnetic field guiding muons in a bent-
solenoid channel consists of a longitudinal sole-
noidal field for focusing, a vertical dipole field for
dispersion, and a quadrupole field from gradient
dipoles for symmetric focusing. The magnetic field
and vector potential in the usual Frenet–Serret
coordinate system fx; y; sg can be written, up to
the linear order, as [4]

Bxðx; y; sÞ ¼ �1
2

b0
sx þ b1y;

Byðx; y; sÞ ¼ b0 þ b1x � 1
2

b0
sy;

Bsðx; y; sÞ ¼ bs � kbsx þ b0
0y ð1Þ

and

Axðx; y; sÞ ¼ �1
2

bsy þ 1
3
kbsxy � 1

3
b0
0 y2;

Ayðx; y; sÞ ¼ 1
2

bsx � 1
3
kbsx

2 þ 1
3

b0
0xy;

Asðx; y; sÞ ¼ �b0x � 1
2ðb1 � kb0Þx2 þ 1

2 b1y
2 ð2Þ

where bs; b0; b1 are the solenoidal, dipolar, quad-
rupolar components. They are all s-dependent to
account for the fringe field. A prime denotes
differentiation with respect to s: kðsÞ is the

curvature of the reference orbit and is normally
chosen to be qb0ðsÞ=p0 for a reference particle of
charge q and nominal momentum p0: Here As is
the normal, instead of the canonical, s-component
of A:
The Hamiltonian for a bent-solenoid channel,

with s as the independent variable, can be derived
from the standard procedure. We start from the
basic expression [5]

H ¼ � 1þ
x

r

� �

	 qAs þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

c

� �2
�ðmcÞ2 � ðPx � qAxÞ

2 � ðPy � qAyÞ
2

s2
4

3
5;
ð3Þ

where E and m are the muon’s energy and rest
mass; Px and Py are the transverse canonical
momentum. For convenience we transform the
longitudinal canonical variables from ðt;�EÞ to
ðz; p0dÞ using the generating function

F3ð�E; z; sÞ ¼
ðs � zÞE þ E0z

b0c
; ð4Þ

where E0 and b0 are the energy and velocity of the
reference particle. Using

t ¼ �
@F3

@ð�EÞ
; p0d ¼ �

@F3

@z
; ð5Þ

we have

z ¼ s � b0ct; d ¼
1

b20

E � E0

E0
C

Dp

p0
; ð6Þ

i.e., z is the longitudinal position relative to the
reference particle, and d measures the relative
energy deviation. The new Hamiltonian is given by
Hðx;Px; y;Py; t;�EÞ þ @sF3: Normalizing both the
canonical momentum and Hamiltonian by p0;
expanding the Hamiltonian and keeping only the
first and second order terms, we obtain the new
Hamiltonian as

H ¼ � 1þ
x

r

� �
qAs

p0
�

x

r
þ
1

2
px �

qAx

p0

� �2

þ
1

2
py �

qAy

p0

� �2
þ
1

2g20
d2: ð7Þ

Here px; py are the normalized momenta with
respect to p0: g0 is the Lorentz factor of the

1R. Palmer first suggested the possibility of replacing some of

the weak solenoids of a transverse cooling channel with

gradient dipoles to keep the required focusing while introducing

the dipole field.
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reference particle. Inserting the vector potential in
Eq. (2) and expanding the Hamiltonian up to the
second-order yields the linear Hamiltonian as

H ¼ 1
2
ðp2x þ p2yÞ þ

1
2
#b2s ðx

2 þ y2Þ � #bsLz ð8Þ

�
xd
rðsÞ

þ
x2

2rðsÞ2
þ
1

2
#b1ðx2 � y2Þ þ

1

2

1

g20
d2 þ VðsÞz2

	 

;

where #bs ¼ ðq=2p0Þbs ¼ ðq=2p0ÞBsð0; 0; sÞ; #b1 ¼
ðq=p0Þb1 ¼ ðq=p0Þð@By=@xÞjx¼y¼0; 1=r ¼ k ¼ ðq=p0Þ
b0 ¼ ðq=p0ÞByð0; 0; sÞ: The canonical angular mo-
mentum Lz ¼ xpy � ypx: Here, for simplicity, we
added a simple oscillator with focusing strength
V ðsÞ as the longitudinal Hamiltonian and assumed
no acceleration of the reference particle. Note that,
at linear order, the fringe field terms ðb0

s; b
0
0Þ

and curvature terms ðkbs; kb0Þ do not appear
in the Hamiltonian, and the potential part of
the Hamiltonian is additive for superimposed
magnets.
For symmetric focusing channels, the quadru-

pole components of the gradient dipoles must be
tied to the bending radius as #b1ðsÞ ¼ �1

2
rðsÞ2: Thus

the total focusing strength becomes KðsÞ ¼
#bsðsÞ

2 þ 1
2
rðsÞ2: The Hamiltonian reduces to

H ¼
1

2
ðp2x þ p2yÞ þ

1

2
KðsÞðx2 þ y2Þ � #bsðsÞLz

�
xd
rðsÞ

þ
1

2

1

g20
d2 þ VðsÞz2

	 

ð9Þ

3. Dispersion and beta functions

To solve the Hamiltonian of Eq. (6), we trans-
form it to the Larmor frame (a rotating frame that
rotates at half of the cyclotron frequency) so that
the x–y coupling term Lz is removed. Using the *
over a symbol to indicate that it is in the Larmor
frame, the transformation reads

x ¼ *x cos yþ *y sin y; y ¼ *y cos y� *x sin y; etc:

ð10Þ

where yðsÞ ¼
R s

0
#bsð%sÞ d%s is the rotating angle of the

Larmor frame. The generating function is

F2 ¼ x½ *px cos yþ *py sin y�

þ y½ *py cos y� *px sin y� ð11Þ

In the Larmor frame, the Hamiltonian becomes

*H ¼
1

2
ð *p2x þ *p2yÞ þ

1

2
KðsÞð *x2 þ *y2Þ �

*xd cos½yðsÞ�
rðsÞ

�
*yd sin½yðsÞ�

rðsÞ
þ
1

2

1

g20
d2 þ VðsÞz2

	 

: ð12Þ

To further decouple the transverse and long-
itudinal degrees of freedom, we introduce the
dispersions *Dx; *Dy and a corresponding canonical
transformation from ð *x; *px; *y; *py; z; dÞ to
ð *xb; *pxb ; *yb; *pyb ; #z;

#dÞ as

*x ¼ *xb þ *Dxd; *px ¼ *pxb þ *D0
xd;

*y ¼ *yb þ *Dyd; *py ¼ *pyb þ *D0
yd;

z ¼ #z � *D0
x *x þ *Dx *px � *D0

y *y þ *Dy *py; d ¼ #d ð13Þ

which can be generated by the generating function

F ¼ð *x � *DxdÞ *pxb þ *D0
x *xdþ ð *y � *DydÞ *pyb

þ *D0
y *yd� #zd� 1

2
ð *Dx

*D0
x þ *Dy

*D0
yÞd

2: ð14Þ

The transformed Hamiltonian *Hb is complicated.
However, it can be dramatically simplified and
decoupled by requiring (1) the cavity regions are
dispersion free and (2) the dispersion functions
satisfy the differential equations2

*D00
x þ KðsÞ *Dx ¼

cos½yðsÞ�
rðsÞ

;

*D00
y þ KðsÞ *Dy ¼

sin½yðsÞ�
rðsÞ

ð15Þ

These are similar to the well-known dispersion
equation in quadrupole channels. However, be-
cause of the solenoidal field, a vertical dipole will
generate dispersion in both horizontal and vertical
planes with driving terms depending on the
Larmor rotation angle through the cos y and
sin y: It is more difficult to find a dispersion
solution for bent-solenoid channels because there

2For general cases without symmetric focusing, the trans-

verse and longitudinal parts of the Hamiltonian Eq. (8) can still

be decoupled with more complicated dispersion equations

*D00
x þ KðsÞ þ KaðsÞ cos½2yðsÞ�f g *Dx þ KaðsÞ sin½2yðsÞ� *Dy ¼

cos½yðsÞ�
rðsÞ

;

*D00
y þ KðsÞ � KaðsÞ cos½2yðsÞ�f g *Dy þ KaðsÞ sin½2yðsÞ� *Dx ¼

sin½yðsÞ�
rðsÞ

:

Here the asymmetric focusing strength KaðsÞ ¼ #b1ðsÞ þ 1=2rðsÞ2:
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are two equations to satisfy and furthermore the
right-hand-side driving terms depend on the
focusing strength KðsÞ due to the focusing from
the gradient dipole.
Under the above two conditions, the new

Hamiltonian *Hb is reduced to a simple form

*Hb ¼ 1
2
ð *p2xb

þ *p2ybÞ þ
1
2

KðsÞð *x2b þ *y2bÞ

þ 1
2
½IðsÞd2 þ VðsÞ#z2� ð16Þ

Here IðsÞ ¼ ð1=g20Þ � ð *Dx cos½yðsÞ�=rðsÞÞ � ð *Dy sin
½yðsÞ�=rðsÞÞ is the negative of usual slip factor.
Now that all three degrees of freedom are

decoupled in *Hb; we can introduce lattice func-
tions for them in analog to the Courant–Snyder
theory [5]. There is one set of lattice functions
ðbT; aT; gTÞ for both transverse degrees of freedom
and one set ðbL; aL; gLÞ for the longitudinal
motion, which satisfy the familiar equations:

b0T ¼ �2aT; a0T ¼ KðsÞbT � gT;

gT ¼
1þ a2T
bT

ð17Þ

and

b0L ¼ �2IðsÞaT; a0L ¼ V ðsÞbT � IðsÞgT;

gL ¼
1þ a2L
bL

: ð18Þ

With appropriate boundary conditions, these two
sets of lattice functions define the transverse and
longitudinal machine ellipses that characterize the
betatron and synchrotron oscillations. Using the
lattice functions determined by Eqs. (12), (14) and
(15) and the transformations in Eqs. (7) and (10),
it is straightforward to write down the complete
solution for single-particle motion in a bent-
solenoid channel.

4. Design of dispersion functions

As in storage rings, optimizing the dispersion is
an important part of a longitudinal cooling lattice
design. Dispersion functions need to fulfill many
conditions for a lattice to function well. Eq. (12)
provides a useful tool for dispersion design in
a symmetrically focused bent-solenoid channel.

Successful design of a longitudinal ionization
cooling channel is still under investigation. In this
section, we provide an example to illustrate some
of the issues and compare the result of Eq. (12)
with simulation.
The thoughts behind this example are as

follows. Since longitudinal cooling is in fact
achieved via transverse cooling, a natural starting
point for a bent-solenoid cooling channel is to add
dispersion in suitable regions of a successful
transverse (straight) solenoid cooling channel
while maintaining the original transverse focusing
properties, especially the periodicity and beta
function that are critical to transverse cooling.
This can be achieved by reducing the solenoid
focusing to balance the focusing from added
gradient dipoles, i.e., adjust rðsÞ as desired but
keep the total focusing strength KðsÞ ¼ #b2s þ 1=2r

2

unchanged. Obviously there is a limit on the dipole
strengths and locations. Also, the dispersion
design is complicated because reducing the sole-
noid strength will affect the Larmor rotation angle
and thus the dispersion driving terms in Eq. (12).
Other conceivable conditions are: (1) Cavity
regions should be dispersion free in order to
decouple the transverse and longitudinal degrees
of freedom. Thus the dispersion has to be localized
between the cavities, which cannot be too far apart
due to longitudinal focusing requirement. (2)
Maximum dispersion better occurs in a minimum
beta region due to the large beam size and limited
aperture. (3) The dispersion insertion is better if it
is a first-order achromat.
In the example shown in the figure, we start with

a ‘‘superFoFo’’ lattice used in the transverse
cooling channel of the neutrino factory feasibility
study-II [3]. Two periods of the periodic solenoid
field ð #bsÞ and beta function ðbÞ of the superFoFo
lattice are shown as a thin dashed line and a thick
solid line, respectively. To generate a closed
dispersion bump that fulfills the above conditions
and the more stringent requirement that Dx ¼
D0

x ¼ Dy ¼ D0
y ¼ 0 at both ends for three different

muon energies (to control chromatic effect), 20
short piecewise-constant vertical dipoles with
fringe field are added. By adjusting the dipole
strengths and the solenoid focusing as discussed
above, we found a solution of Eq. (12) and plot the
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Dx ðDyÞ as thick (thin) dotted line. The added
dipole field ð1=rÞ is plotted as a thin dash-dot line
and the adjusted solenoid strength ð #bsÞ as a thin
solid line. This bent-solenoid channel was tracked
with the ICOOL simulation code [6] and the
tracked dispersion Dx ðDyÞ is also shown as thick
(thin) gray line. We see that the tracking result and
Eq. (12) agree very well. This example demon-
strates that Eq. (12) can be used to design
sophisticated dispersion functions (Fig. 1).
Since the dispersions begin and end with

zeros and the beta function is unchanged, such
a dispersion section could be used to implement
longitudinal ionization cooling by replacing cer-
tain periods of the original straight solenoid
channel. We emphasize that this is just an
example solution. Much simpler dispersion solu-
tions exist if we require the zero boundary
condition for only one muon energy. Further-
more, if the solenoid and dipole fields do not
overlap, the channels discussed in this paper
reduce to simpler separated function lattices as
proposed in Ref. [7].
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Fig. 1. Dispersion example of a bent-solenoid channel. Lattice functions b; Dx; and Dy are in m. Field strength functions #bs and 1=r
are in 1/m. The original and adjusted solenoid strengths are in dashed and solid (adjusted) lines. The dispersions calculated with

Eq. (12) and ICOOL tracking are in dotted and gray (simulated) lines.
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